SGB FTSO Contracts

Chuck Benedict

Aug 09, 2022

1 Installation

2 Get Started

2.1 APL
22 Claim e e

2.3 Delegation
2.4 Encryption

25 Events

3 Indices and tables

Index

USAGE

SGB FTSO Contracts

A small Python library to quickly instantiate Flare Time Series Oracle (FTSO) contracts on the Songbird network.

USAGE 1

https://pypi.org/project/sgb-ftso-contracts
https://app.travis-ci.com/github/chuckb/sgb-ftso-contracts
https://www.github.com/chuckb/sgb-ftso-contracts
https://gitlab.com/flarenetwork/flare-smart-contracts/-/tree/Songbird-deploy-with-contract-addresses

SGB FTSO Contracts

2 USAGE

CHAPTER
ONE

INSTALLATION

pip install sgb-ftso-contracts

SGB FTSO Contracts

4 Chapter 1. Installation

CHAPTER
TWO

GET STARTED

How to get prices of crypto assets tracked by the Songbird network:

from sgb_ftso_contracts import Ftso
from web3 import Web3

Songbird network RPC endpoint
This is a free, rate-limited API node.
rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3 with REST HTTP provider.
web3 = Web3(Web3.HTTPProvider (rpcurl))

Create an FTSO contract instance with factory library.
btcFtso = Ftso("BTC").contract(web3)

Fetch the latest price for Bitcoin from the FTSO.
btcDecimals = btcFtso.functions.ASSET_PRICE_USD_DECIMALS().call()
btcPriceData = btcFtso.functions.getCurrentPrice().call()

Prices are recorded as integers. Convert to decimal format.
print(btcPriceDatal[0®] / pow(10®, btcDecimals))

2.1 API

2.1.1 FactoryBase

class sgb_ftso_contracts.FactoryBase (apiurl="https://songbird-explorer.flare.network/api")

This is a class common to all contract factory operations.
self.apiurl
Location of Blockscout api endpoint for Songbird.

Type

string

__init__ (apiurl="https://songbird-explorer.flare.network/api")
The constructor for FactoryBase class.

SGB FTSO Contracts

Parameters
apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

contract (web3: Web3)
A method to instantiate a Web3 Contract set at self.address.

Parameters
web3 (IWeb3) — An instance of the Web3 class, wired up to a valid provider.

Returns
An instantied contract at self.address.

Return type
Contract

getABI (address)
A method to fetch the application binary interface (ABI) for the contract at the specified address.

Parameters
address (string) — Contract address prefixed with Ox.

Returns
The ABI of the contract.

Return type
string

2.1.2 Ftso

class sgb_ftso_contracts.Ftso(symbol, apiurl=None)

A factory to instantiate the Ftso contract. Note that this link is the FTSO for BTC. FTSOs are all the same
contract; one instance per asset.

self.symbol
The asset symbol of the FTSO.

Type

string
__init__(symbol, apiurl=None)
The constructor for Ftso class.
Parameters
e symbol (string) — The asset symbol of the FTSO.

* apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

contract (web3: Web3)
A method to instantiate a Web3 Contract set at self.address.

Parameters
web3 (Web3) — An instance of the Web3 class, wired up to a valid provider.

Returns
An instantied contract at self.address for the FTSO identified by self.symbol.

Return type
Contract

6 Chapter 2. Get Started

https://songbird-explorer.flare.network/address/0x20Fecb7b1Ff69C62BBA5Bb6aCD5a9743D11E246F/contracts

SGB FTSO Contracts

2.1.3 FtsoManager

class sgb_ftso_contracts.FtsoManager (address='0xbfA12e4E1411B62EdASB035d71735667422A6A9¢',
apiurl=None)

A factory to instantiate the FtsoManager contract. This contract manages FTSO voting operations and coordi-
nates price and reward epoch execution.

self.address

The address of the contract starting with 0x.

Type

string
__init__ (address='0xbfA12e4E1411B62EdA8B035d71735667422A6A9¢', apiurl=None)
The constructor for FtsoManager class.

Parameters

* address (string) — Address of the contract starting with Ox.

¢ apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

2.1.4 FtsoRegistry

class sgb_ftso_contracts.FtsoRegistry (address='0x6D222fb4544ba230d4b90BA 1BfCOA0IA94E6cB23’,
apiurl=None)

A factory to instantiate the FtsoRegistry contract. This provides Centralized access to all FTSOs from one

contract. This contract is handy to get FTSO current price info from, as one does not need to go after the FTSO
directly.

self.address

The address of the contract starting with 0x.

Type
string

__init__(address='0x6D222fb4544ba230d4b90BA1BfCOA0IA94E6¢cB23', apiurl=None)
The constructor for FtsoRegistry class.

Parameters
¢ address (string) — Address of the contract starting with 0x.

 apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

2.1. API

https://songbird-explorer.flare.network/address/0xbfA12e4E1411B62EdA8B035d71735667422A6A9e/contracts
https://songbird-explorer.flare.network/address/0x6D222fb4544ba230d4b90BA1BfC0A01A94E6cB23/contracts

SGB FTSO Contracts

2.1.5 FtsoRewardManager

class sgb_ftso_contracts.FtsoRewardManager (address="'0xc5738334b972745067fFa666040fdeADc66Cb925',
apiurl=None)

A factory to instantiate the FtsoRewardManager contract. Vote power delegators can use this contract to claim
rewards and check reward status.

self.address

The address of the contract starting with 0x.

Type

string
__init__(address='0xc5738334b972745067fFa666040fdeADc66Cb925', apiurl=None)
The constructor for FtsoRewardManager class.
Parameters
* address (string) — Address of the contract starting with Ox.

¢ apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

2.1.6 VoterWhiteLister

class sgb_ftso_contracts.VoterWhitelister (address='0xa76906EfBA6dFAel55FfC4c0eb36¢DF0A28ae24D’,
apiurl=None)

A factory to instantiate the VoterWhitelister contract. Price providers must be whitelisted in order to submit
prices to the FTSOs. This contract is how they do it.

self.address

The address of the contract starting with 0x.

Type

string

__init__(address='0xa76906EfBA6dFAel155FfC4c0eb36¢cDF0A28ae24D’, apiurl=None)

The constructor for VoterWhitelister class.
Parameters
¢ address (string) — Address of the contract starting with 0x.

¢ apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

2.1.7 WNAT

class sgb_ftso_contracts.WNAT (address='0x02f0826ef6aD107Cfc861152B32B52fD11BaB9ED’,
apiurl=None)

A factory to instantiate the WNAT contract. Holders of the native chain token (for the Songbird network, SGB)
use this contract to wrap their Songbird in order to delegate vote power to FTSOs. WNAT = wrapped native

8 Chapter 2. Get Started

https://songbird-explorer.flare.network/address/0xc5738334b972745067fFa666040fdeADc66Cb925/contracts
https://songbird-explorer.flare.network/address/0xa76906EfBA6dFAe155FfC4c0eb36cDF0A28ae24D/contracts
https://songbird-explorer.flare.network/address/0x02f0826ef6aD107Cfc861152B32B52fD11BaB9ED/contracts

SGB FTSO Contracts

self.address

The address of the contract starting with 0x.

Type

string

__init__(address='0x02f0826ef6aD107Cfc861152B32B52fD11BaB9ED', apiurl=None)
The constructor for WNAT class.

Parameters
* address (string) — Address of the contract starting with 0x.

 apiurl (string) — Location of Blockscout api endpoint for Songbird. Used for fetching
ABI automatically.

2.2 Claim

2.2.1 Claim Unclaimed Rewards

To use this example, create a local file containing an encrypted private key for the account to claim rewards for. Never
store private keys in the clear. This example prompts you to enter the password from the command line and decrypts
the private key for one-time use.

from sgb_ftso_contracts import *
from web3 import Web3

from eth_account import Account
import getpass

rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

Init the FtsoRewardManager contract
ftsoRewardManagerFactory = FtsoRewardManager ()
ftsoRewardManagerContract = ftsoRewardManagerFactory.contract(web3)

Setup default web3 transaction parameters. Note chain id 19 is the Songbird chain.
tx_parms = {

'chainId': 19,

'gas': 500000,

'gasPrice': web3.toWei('50', 'gwei'),

'nonce': O

}

Get the password to unencrypt key
password = getpass.getpass()

with open("an encrypted private key file reference goes here", 'r') as f:
Set up account to work with by decrypting the private key.
encrypted = json.loads(f.read())
privatekey = Account.decrypt(encrypted, password)

(continues on next page)

2.2. Claim 9

SGB FTSO Contracts

(continued from previous page)

account = Account.from_key(privatekey)
web3.eth.default_account = account.address

See if there are unclaimed rewards by reward epoch for account.
unclaimedEpochs = ftsoRewardManagerContract.functions.
—getEpochsWithUnclaimedRewards (account.address).call()

if len(unclaimedEpochs) > 0:

Build the undelegate transaction

tx_parms['nonce"] = web3.eth.getTransactionCount(account.address)

Build transaction to claim rewards for all unclaimed reward epochs

tx = ftsoRewardManagerContract.functions.claimReward(account.address,..
—unclaimedEpochs) .buildTransaction(tx_parms)

Sign transaction

signed_tx = account.sign_transaction(tx)

Execute the transaction

tx_hash = web3.eth.send_raw_transaction(signed_tx.rawTransaction)

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)

print(f'Claimed with tx_hash {tx_receipt["transactionHash"].hex()}")

2.3 Delegation

2.3.1 Undelegate All Votepower to Ftsos

To use this example, create a local file containing an encrypted private key for the account to undelegate from. Never
store private keys in the clear. This example prompts you to enter the password from the command line and decrypts
the private key for one-time use.

from sgb_ftso_contracts import *
from web3 import Web3

from eth_account import Account
import getpass

rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

Init the WNAT contract
wNatFactory = WNAT(Q)
wNat = wNatFactory.contract(web3)

Setup default web3 transaction parameters. Note chain id 19 is the Songbird chain.
tx_parms = {

'chainId': 19,

'gas': 500000,

'gasPrice': web3.toWei('50', 'gwei'),

'nonce': 0

(continues on next page)

10 Chapter 2. Get Started

SGB FTSO Contracts

(continued from previous page)

Get the password to unencrypt key
password = getpass.getpass()

with open("an encrypted private key file reference goes here", 'r') as f:
Set up account to work with by decrypting the private key.
encrypted = json.loads(f.read())
privatekey = Account.decrypt(encrypted, password)
account = Account.from_key(privatekey)
web3.eth.default_account = account.address

Build the undelegate transaction

tx_parms['"nonce"] = web3.eth.getTransactionCount(account.address)
tx = wNat.functions.undelegateAll() .buildTransaction(tx_parms)
signed_tx = account.sign_transaction(tx)

Execute the transaction

tx_hash = web3.eth.send_raw_transaction(signed_tx.rawTransaction)
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)
print(f'Undelegated with tx_hash {tx_receipt["transactionHash"].hex()}")

2.3.2 Delegate Votepower By Percentage to Ftsos

To use this example, create a local file containing an encrypted private key for the account to undelegate from. Never
store private keys in the clear. This example prompts you to enter the password from the command line and decrypts
the private key for one-time use.

from sgb_ftso_contracts import *
from web3 import Web3

from eth_account import Account
import getpass

rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

Init the WNAT contract
wNatFactory = WNATQ)
wNat = wNatFactory.contract(web3)

Setup default web3 transaction parameters. Note chain id 19 is the Songbird chain.
tx_parms = {

'chainId': 19,

'gas': 500000,

'gasPrice': web3.toWei('50', 'gwei'),

'nonce': O

Get the password to unencrypt key
password = getpass.getpass()

(continues on next page)

2.3. Delegation 11

SGB FTSO Contracts

(continued from previous page)

with open("an encrypted private key file reference goes here", 'r') as f£:
Set up account to work with by decrypting the private key.
encrypted = json.loads(f.read())
privatekey = Account.decrypt(encrypted, password)
account = Account.from_key(privatekey)
web3.eth.default_account = account.address

Build the undelegate transaction

tx_parms[''nonce"] = web3.eth.getTransactionCount(account.address)

Percentage in basis points = % * 100

tx = wNat.functions.delegate(web3.toChecksumAddress("delegator address goes here"),.
—10000) .buildTransaction(tx_parms)

signed_tx = account.sign_transaction(tx)

Execute the transaction

tx_hash = web3.eth.send_raw_transaction(signed_tx.rawTransaction)
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)
print(f'Undelegated with tx_hash {tx_receipt["transactionHash"].hex()}")

2.4 Encryption

2.4.1 Encrypt Private Key

To use the included examples that execute transactions on the Songbird blockchain, you will need access to your private
key (or a wallet and an API). Hardware or software wallets are out of scope for these examples. Private keys should
never be stored in the clear, so this utility provides a means to encrypt your key with a password.

from eth_account import Account

from getopt import getopt, GetoptError
from pprint import pprint

import json

import sys

import getpass

def main(argv):
"Encrypt a wallet private key using a passphrase and store in a
local directory.

The encrypted key file is defined with the -o switch on the command line.

"

outputfile =

Get command line args
try:

opts, args = getopt(argv, "ho:", ["outputfile="])
except GetoptError:

printinvoke()

exit(2)

(continues on next page)

12 Chapter 2. Get Started

SGB FTSO Contracts

(continued from previous page)

Private key and password could be passed on command line for automation
purposes, but is not secure since command history can be stored.
for opt, arg in opts:
if opt == "-h":
printinvoke()
exit()
elif opt in ("-0", "--outputfile™):
outputfile = arg

Get private key and password...do not echo to terminal.
key = getpass.getpass("Private key: ")
password = getpass.getpass()

Encrypt...
encrypted = Account.encrypt(key, password)
pprint(encrypted)

Write encrypted key to output file defined on command line.
with open(outputfile, 'w') as f:
f.write(json.dumps(encrypted))

def printinvoke():
print ("usage:™)
print(" encryptkey.py -o <outputfile>")

if __name__ == "__main__":

main(sys.argv[1l:])

2.5 Events

The Songbird smart contract collection fires many events that can give you insight on Ftso operations as they happened.
Any event can be fetched, so long as you know what block range to look for. It is unwise to start a block 0, scanning
all blocks in the chain. Most API providers will not allow this operation. So one should build and keep a mapping
of block to something like price epoch or reward epoch oft-chain, filtering over small block ranges shortly after they
happen. This can be done with RPC or streaming over web sockets. Web sockets are more performant but less reliable
(IMHO). The examples below use RPC.

2.5.1 PriceHashesSubmitted

Retrieve logs from blocks containing the PriceHashesSubmitted event from the PriceSubmitter contract.

from sgb_ftso_contracts import PriceSubmitter
from web3 import Web3

Define the blockchain endpoint to use
rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

(continues on next page)

2.5. Events 13

SGB FTSO Contracts

(continued from previous page)

Get the PriceSubmitter contract
priceSubmitterFactory = PriceSubmitter()
priceSubmitter = priceSubmitterFactory.contract(web3)

This search happens over a block range, so it is necessary to define that range.
endblock = 20481300
submitfilter = priceSubmitter.events.PriceHashesSubmitted.
—createFilter(fromBlock=endblock - 30, toBlock=endblock)
events = submitfilter.get_all_entries()
for event in events:

print(event["args"]["submitter"])

print(event["args"]["epochId"])

print(event["args"]["ftsos"])

print(event["args"]["timestamp"])

2.5.2 PricesRevealed

Retrieve logs from blocks containing the PricesRevealed event from the PriceSubmitter contract. This example will
print the revealed prices for ADA for a given epoch.

from sgb_ftso_contracts import Ftso, PriceSubmitter
from web3 import Web3

Define the blockchain endpoint to use
rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

Init the ftsoManager factory
ftsoFactory = Ftso("ADA™)
ftsoADA = ftsoFactory.contract(web3)

Get the PriceSubmitter contract
priceSubmitterFactory = PriceSubmitter()
priceSubmitter = priceSubmitterFactory.contract(web3)

This search happens over a block range, so it is necessary to define that range.
endblock = 20481300

Create an event filter
revealfilter = priceSubmitter.events.PricesRevealed.createFilter(fromBlock=endblock - 15,
-, toBlock=endblock + 15)
events = revealfilter.get_all_entries()
Iterate over the events found
for event in events:
pos = 0
print(event["args"]["epochId"])
print(event["args"]["voter"])
for ftso in event["args"]["ftsos"]:

(continues on next page)

14 Chapter 2. Get Started

SGB FTSO Contracts

(continued from previous page)

if ftso.lower() == ftsoADA.address.lower():
print(event["args"]["prices"][pos])

else:
pos += 1

2.5.3 PriceEpochlnitializedOnFtso

Retrieve logs from blocks containing the PriceEpochlnitializedOnFtso event from the ADA Ftso contract. Any Ftso
would work. Iterating over ranges of blocks, one can map blocks to price epochs, which then enable fetching other
events within the same price epoch. Knowing what blocks to go after is the key.

from sgb_ftso_contracts import *
from web3 import Web3

rpcurl = "https://songbird-api.flare.network/ext/bc/C/rpc"

Init web3
web3 = Web3(Web3.HTTPProvider (rpcurl))

Init an ftso factory
ftsoFactory = Ftso("ADA")
ftsoADA = ftsoFactory.contract(web3)

Some block that has already occured
endblock = 20481240

Discern when price epochs occur in the context of chain blocks.
Blocks are not produced at a constant rate, so this mapping cannot be determined by.
— formula.
epochInitFilter = ftsoADA.events.PriceEpochInitializedOnFtso.
—.createFilter (fromBlock=endblock - 30, toBlock=endblock)
events = epochInitFilter.get_all_entries()
for event in events:
print(f"Over block range: {endblock - 30} to {endblock}")
print(£"At block: {event['blockNumber']}"™)
print(£"The price epoch was: {event['args']['epochId']}")
print(£"And the price epoch ends at Unix epoch timestamp: {event['args']['endTime']}")

2.5. Events 15

SGB FTSO Contracts

16 Chapter 2. Get Started

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

¢ search

17

SGB FTSO Contracts

18 Chapter 3. Indices and tables

Symbols

__init__Q (sgb_ftso_contracts.FactoryBase method),
5

__init__Q) (sgb_ftso_contracts.Ftso method), 6

__init__Q (sgb_ftso_contracts.FtsoManager method),

7

__init__Q (sgb_ftso_contracts.FtsoRegistry method),
7

__init__Q (sgb_ftso_contracts.FtsoRewardManager
method), 8

__init__QO (sgb_ftso_contracts.VoterWhitelister
method), 8

__init__Q (sgb_ftso_contracts. WNAT method), 9

A

address (sgb_ftso_contracts.FtsoManager.self at-
tribute), 7

address (sgb_ftso_contracts.FtsoRegistry.self attribute),
7

address (sgb_ftso_contracts.FtsoRewardManager.self

attribute), 8

(sgb_ftso_contracts.VoterWhitelister.self

attribute), 8

address (sgb_ftso_contracts. WNAT.self attribute), 8

apiurl (sgb_ftso_contracts.FactoryBase.self attribute),

5

address

C

contract() (sgb_ftso_contracts.FactoryBase method),
6
contract() (sgb_ftso_contracts.Ftso method), 6

F

FactoryBase (class in sgb_ftso_contracts), 5

Ftso (class in sgb_ftso_contracts), 6

FtsoManager (class in sgb_ftso_contracts), 7
FtsoRegistry (class in sgb_ftso_contracts), 7
FtsoRewardManager (class in sgb_ftso_contracts), 8

G

getABI() (sgb_ftso_contracts.FactoryBase method), 6

INDEX

S

symbol (sgb_ftso_contracts.Ftso.self attribute), 6

V

VoterWhitelister (class in sgb_ftso_contracts), 8

W

WNAT (class in sgb_ftso_contracts), 8

19

	Installation
	Get Started
	API
	FactoryBase
	Ftso
	FtsoManager
	FtsoRegistry
	FtsoRewardManager
	VoterWhiteLister
	WNAT

	Claim
	Claim Unclaimed Rewards

	Delegation
	Undelegate All Votepower to Ftsos
	Delegate Votepower By Percentage to Ftsos

	Encryption
	Encrypt Private Key

	Events
	PriceHashesSubmitted
	PricesRevealed
	PriceEpochInitializedOnFtso

	Indices and tables
	Index

